Drag force on a sphere moving toward an anisotropic superhydrophobic plane
نویسندگان
چکیده
منابع مشابه
Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a superhydrophobic striped wall has been investigated as a function of arbitrary separation h. Superhydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction of the gas area ϕ. For very large values of h/R, we recover the macroscopic formulae for a sphere movi...
متن کاملDrag force on a sphere moving towards a corrugated wall
From the solution of the creeping-flow equations, the drag force on a sphere becomes infinite when the gap between the sphere and a smooth wall vanishes at constant velocity, so that if the sphere is displaced towards the wall with a constant applied force, contact theoretically may not occur. Physically, the drag is finite for various reasons, one being the particle and wall roughness. Then, f...
متن کاملDrag reduction on a patterned superhydrophobic surface.
We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited ...
متن کاملSuperhydrophobic surfaces reduce drag
Rare and common The hot grains of tektite and obsidian that show up in HD 172555’s IR spectrum are small enough that the star’s radiation pressure would drive them away from their current 6-AU orbit within 0.1 million years. The SiO molecules would likely condense and reform minerals on the same time scale. Given that rocky planets take 100 My to form, catching a giant impact in HD172555, despi...
متن کاملQuantum drag forces on a sphere moving through a rarefied gas.
As an application of quantum fluid mechanics, we consider the drag force exerted on a sphere by an ultradilute gas. Quantum mechanical diffraction scattering theory enters in that regime wherein the mean free path of a molecule in the gas is large compared with the sphere radius. The drag force is computed in a model specified by the "sticking fraction" of events in which a gaseous molecule is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.84.026330